- Martingale transforms and complex uniform convexity
- Interpolation Theory and Applications, Contemp. Math
- L2 boundedness for maximal commutators with rough variable kernels
- Maximal Calderón‐Zygmund singular integral on RBMO
- Deng, D.; Han, Y.
- Lp boundedness of Carleson type maximal operators with nonsmooth kernels
- Translated and revised from the 1995 Spanish original by David Cruz‐Uribe
- Maximal operator for multilinear singular integrals with non‐smooth kernelsDuong, X. T.; Gong, R.; Grafakos, L.; Li, J.; Yan, L.
- Multilinear operators with non‐smooth kernels and commutators of singular integrals
- Grafakos, L.
- Grafakos, L.
- Multiple‐weighted norm inequalities for maximal multi‐linear singular integrals with non‐smooth kernels
- Grafakos, L.; Torres, R. H.
- Han, Y.; Lu, G.
- Inhomogeneous discrete Calderón reproducing formulas for spaces of homogeneous type
- Sharp L1 estimates for singular transport equations
- Astala's conjecture on distortion of Hausdorff measures under quasiconformal maps in the plane
- Lacey, M.; Thiele, C.
- Lerner, A. K.
- Sharp weighted norm inequalities for Littlewood‐Paley operators and singular integrals
- New maximal functions and multiple weights for the multilinear Calderón‐Zygmund theoryLerner, A. K.; Ombrosi, S.; Pérez, C.; Torres, R. H.; Trujillo‐González, R.
- Boundedness of Calderón‐Zygmund operators on non‐homogeneous metric measure spaces: equivalent characterizations
- Lu, S.; Ding, Y.; Yan, D.
- Meyer, Y.
- Stein, E. M.
- Calderón‐Zygmund operators on mixed Lebesgue spaces and applications to null forms
- Boundedness results for operators with singular kernels on distribution spaces
- Localized Hardy spaces H1 related to admissible functions on RD‐spaces and applications to Schrödinger operators
Measure and Integral: An Introduction to Real Analysis, 1977, 288 pages, Richard Wheeden, Richard L. Wheeden, Antoni Zygmund,, 999.
- Text: Measure and integral, R. Wheeden and A. This course will introduce students to Lebesgue integration. The content of this course will be examined in the real analysis portion of the analysis preliminary examination. Homework: You should endeavor to write out your homework clearly. Use complete sentences.
- By Rudin’s extension of Zygmund’s inequality [24] and Pisier’s characterisation of Sidon sets [19], a set is Sidon if and only if for each. For other proofs of Pisier’s theorem, see [4] and [5]. For more details on Sidon sets, we refer the reader to the book [8]. 2.2 Hardy Spaces The (real) Hardy space H1(R)is defined to be the.
- Falcon-team Forum de la team Falcon:: Non Veg Jokes Pdf Download:: Non Veg Jokes Pdf Download:: Falcon-team Index du Forum-> falcon-team-> Recrutements [ON]. 5placesFalcon-team Index du Forum-> falcon-team-> Recrutements [ON].
- Download PDF (287 KB) Abstract. We state a new Calderon-Zygmund decomposition for Sobolev spaces on a doubling Riemannian manifold. We state a new Calderon-Zygmund decomposition for Sobolev spaces on a doubling Riemannian manifold. Our hypotheses are weaker than those of the already known decomposition which used classical Poincare.
Weeden And Zygmund Pdf Viewer Online
- Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
- Chen, Y., Ding, Y.: Rough singular integrals on Triebel-Lizorkin space and Besov space. J. Math. Anal. Appl. 347, 493–501 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- Coifman, R.R., Meyer, Y.: Au delà opérateurs pseudo-différentials. Astérisque 57, 1–198 (1978)MathSciNetGoogle Scholar
- Connett, W.: Singular integrals near L1. Proc. Symp. Pure Math. 35, 163–165 (1979)MathSciNetCrossRefGoogle Scholar
- Ding, Y., Han, Y., Lu, G., Wu, X.: Boundedness of singular integrals on multiparameter weighted Hardy spaces (H^p_w(mathbb{R}^ntimes mathbb{R}^m)). Potential Anal. 37(1), 31–56 (2012)MathSciNetCrossRefGoogle Scholar
- Duoandikoetxea, J.: Fourier analysis. In: Grad. Studies in Math., vol. 29. Amer. Math. Soc., Providence, RI (2000)Google Scholar
- Fan, D.: Calderón–Zygmund operators on compact Lie groups. Math. Z. 216, 401–415 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
- Fefferman, C., Stein, E.M.: Hp spaces of several variables. Acta Math. 129, 137–193 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
- Garcia-Cuerva, J.: Weighted Hp spaces. Diss. Math. 162, 1–63 (1979)MathSciNetGoogle Scholar
- Garcia-Cuerva, J., Martell, J.M.: Wavelet characterization of weighted spaces. J. Geom. Anal. 11, 241–264 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- Garcia-Cuerva, J., Rubio de Francia, J.: Weighted Norm Inequalities and Related Topics. North Holland, Amsterdam (1985)Google Scholar
- Gundy, R.F., Wheeden, R.L.: Weighted integral inequalities for the nontangential maximal function, Lusin area integral, and Walsh–Paley series. Studia Math. 49, 107–124 (1974)MathSciNetzbMATHGoogle Scholar
- Han, Y., Sawyer, E.T.: Para-accretive functions, the weak boundedness property and the Tb theorem. Rev. Mat. Iberoam. 6, 17–41 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
- Han, Y., Lee, M.-Y., Lin, C.-C.: Atomic decomposition and boundedness of operators on weighted Hardy spaces. Can. Math. Bull. 55, 303–314 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
- Lee, M.-Y., Lin, C.-C.: The molecular characterization of weighted Hardy spaces. J. Funct. Anal. 188, 442–460 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- Lee, M.-Y., Lin, C.-C., Yang, W.-C.: (H^p_w) boundedness of Riesz trandforms. J. Math. Anal. Appl. 301, 394–400 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- Lu, S.: Four Lectures on Real Hp Spaces. World Scientific, Singapore (1995)Google Scholar
- Ricci, F., Weiss, G.: A characterization of (H^1(Sigma_{n-1})), harmonic analysis and Euclidean spaces. Proc. Symp. Pure Math. 35, 289–294 (1979)MathSciNetCrossRefGoogle Scholar
- Russ, E.: H1-L1 boundedness of Riesz transforms on Riemannian manifolds and on graphs. Potential Anal. 14, 301–330 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ. Press, Princeton (1993)zbMATHGoogle Scholar